Palladium(II)-Catalyzed Asymmetric 1,3-Dipolar Cycloaddition of Nitrones to 3-Alkenoyl-1,3-oxazolidin-2-ones

Kazushige Hori, Hidehiko Kodama, Tetsuo Ohta, and Isao Furukawa*

Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan

Received July 27, 1998

Chiral phosphinepalladium(II)-catalyzed asymmetric 1,3-dipolar cycloaddition of nitrones to α,β unsaturated carboxylic acid derivatives has been investigated. In the presence of a catalytic amount of [Pd(NCMe)₂{(*S*)-tolbinap}](BF₄)₂ [TolBINAP = 2,2'-bis(di-*p*-tolylphosphino)-1,1'-binaphthyl], the reaction of 3-alkenoyl-1,3-oxazolidin-2-ones as dipolarophiles and N-substituted *N*-benzylidenenitrones has been successfully performed to give isoxazolidine derivatives in high yields with high enantioselectivities. For example, 3-((2,5-dimethyl-3-phenylisoxazolidin-4-yl)carbonyl)-1,3-oxazolidin-2-one was obtained from the reaction of *N*-benzylidenemethylamine *N*-oxide and 3-crotonoyl-1,3oxazolidin-2-one in 89% yield with 60% endo selectivity and 91% ee of the endo isomer. The cycloaddition of *N*-benzylidenebenzylamine *N*-oxide and 3-crotonoyl-1,3-oxazolidin-2-one afforded 3-((2-benzyl-5-methyl-3-phenylisoxazolidin-4-yl)carbonyl)-1,3-oxazolidin-2-one in 94% yield with 93% endo selectivity and 89% ee of the endo isomer. Remarkably, the endo/exo selectivity of the products depended on the N-substituent group of the nitrones. These selectivities were explained using molecular modeling.

Introduction

Optically active heterocyclic compounds are not only useful in themselves but are also widely employable intermediates for preparing chiral acyclic compounds.¹ In particular, isoxazolidines can be converted to γ -amino alcohols, which are precursors to biologically active compounds such as alkaloids and β -lactam antibiotics² (eq 1).

These heterocycles traditionally are prepared from the 1,3-dipolar cycloaddition of nitrones to olefins.² Over the past few years, the use of chiral olefins³ and nitrones⁴ has provided for the asymmetric synthesis of isoxazolidine.⁵ However, only a few catalytic asymmetric 1,3dipolar cycloadditions have been reported so far.^{5a} Since 1994, very good asymmetric induction has been achieved by Jørgensen,⁶ Scheeren,⁷ and Inomata⁸ using chiral Lewis acids as catalysts under stringently anhydrous conditions. Recently, Jørgensen and Kobayashi reported the same reaction catalyzed by chiral magnesium(II)⁹ or ytterbium(III)¹⁰ complexes as stable catalysts in moisture; however, the enantioselectivity depended on the amount of water or the structure of the nitrone. In contrast, late transition metal complexes¹¹ such as palladium or ru-

(5) The review of asymmetric 1,3-dipolar cycloaddition: (a) Gothelf, K. V.; Jørgensen, K. A. Acta Chem. Scand. **1996**, 50, 652–660. (b) Frederickson, M. Tetrahedron **1997**, 53, 403–425. (c) Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. **1998**, 98, 863–909.

(6) (a) Gothelf, K. V.; Jørgensen, K. A. J. Org. Chem. 1994, 59, 5687–5691.
(b) Gothelf, K. V.; Hazell, R. G.; Jørgensen, K. A. J. Am. Chem. Soc. 1995, 117, 4435–4436.
(c) Gothelf, K. V.; Thomsen, I.; Jørgensen, K. A. J. Am. Chem. Soc. 1995, 117, 4435–4436.
(c) Gothelf, K. V.; Thomsen, I.; Jørgensen, K. A. J. Am. Chem. Soc. 1996, 118, 59–64.
(d) Jensen, K. B.; Gothelf, K. V.; Jørgensen, K. A. Helv. Chim. Acta 1997, 80, 2039–2046.

K. V.; Jörgensen, K. A. *Herv. Chill. Acta* 1997, *30*, 2039–2040.
 (7) (a) Seerden, J.-P. G.; Scholte op Reimer, A. W. A.; Scheeren, H. W. *Tetrahedron Lett.* 1994, *35*, 4419–4422. (b) Seerden, J.-P. G.; Kuypers, M. M. M.; Scheeren, H. W. *Tetrahedron: Asymmetry* 1995, *6*, 1441–1450. (c) Seerden, J.-P. G.; Boeren, M. M. M.; Scheeren, H. W. *Tetrahedron* 1997, *53*, 11843–11852.

(8) (a) Ukaji, Y.; Sada, K.; Inomata, K. *Chem. Lett.* **1993**, 1847– 1850. (b) Shimizu, M.; Ukaji, Y.; Inomata, K. *Chem. Lett.* **1996**, 455– 456. (c) Ukaji, Y.; Taniguchi, K.; Sada, K.; Inomata, K. *Chem. Lett.* **1997**, 547–548.

(9) (a) Gothelf, K. V.; Hazell, R. G.; Jørgensen, K. A. *J. Org. Chem.* **1996**, *61*, 346–355. (b) Gothelf, K. V.; Hazell, R. G.; Jørgensen, K. A. *J. Org. Chem.* **1998**, *63*, 5483–5488.

^{*} To whom correspondence should be addressed. Phone: 81 (Japan)-774-65-6623. Fax: 81 (Japan)-774-65-6794. E-mail: ifurukaw@ mail.doshisha.ac.jp

<sup>mail.doshisha.ac.jp
(1) (a) Comprehensive Organic Chemistry, Sammes, P. G., Ed.;
Pergamon: Oxford, 1979; Vol. 4. (b) Comprehensive Heterocyclic Chemistry; Katritzky, A. R.; Rees, C. W.; Eds.; Pergamon: Oxford; 1984; Vols. 1–8.</sup>

^{(2) (}a) 1,3-Dipolar Cycloaddition Chemistry, Vol. 2, Padwa, A., Ed.; Wiley: New York, 1984; Chapter 9, pp 83–168. (b) Torssell, K. B. G. Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis, VCH: New York, 1988. (c) Confalone, P. N.; Huie, E. M. Org. React. **1988**, 36, 1–173.

^{(3) (}a) Brandi, A.; Cicchi, S.; Goti, A.; Pietrusiewicz, K. M.; Zablocka, M.; Wieniewski, W. J. Org. Chem. **1991**, 56, 4383–4388. (b) Takahashi, T.; Fujii, A.; Sugita, J.; Hagi, T.; Kitano, K.; Arai, Y.; Koizumi, T. Tetrahedron: Asymmetry **1991**, 2, 1379–1390. (c) Iyo, M.; Maeda, M.; Kibayashi, C. Tetrahedron Lett. **1992**, 33, 3765–3768. (d) Bravo, P.; Bruche, L.; Farina, A.; Fronza, G.; Meille, S. V.; Merli, A. Tetrahedron: Asymmetry **1993**, 4, 2131–2134. (e) Murahashi, S.-I.; Imada, Y.; Kohno, M.; Kawakami, T. Synlett **1993**, 395–396. (f) Saito, S.; Ishikawa, T.; Moriwake, T. Synlett **1994**, 279–281. (g) Louis, C.; Hootelé, C. Tetrahedron: Asymmetry **1995**, 6, 2149–2152. (h) Ina, H.; Ito, M.; Kibayashi, C. J. Org. Chem. **1996**, 61, 1023–1029. (4) (a) Mukai, C.; Kim, I. J.; Cho, W. J.; Kido, M.; Hanaoka, M. J.

^{(4) (}a) Mukai, C.; Kim, I. J.; Cho, W. J.; Kido, M.; Hanaoka, M. J. Chem. Soc., Perkin Trans. 1 1993, 2495–2503. (b) Saito, S.; Ishikawa, T.; Kishimoto, K.; Kohara, T.; Moriwake, T. Synlett 1994, 282–284. (c) Brandi, A.; Cicchi, S.; Goti, A. J. Org. Chem. 1994, 59, 1315–1318. (d) van den Broek, L. A. G. M. Tetrahedron 1995, 52, 4467–4478. (e) Broggini, G.; Folcio, F.; Sardone, N.; Sonzogni, M.; Zecchi, G. Tetrahedron: Asymmetry 1996, 7, 797–806.

Table 1. Asymmetric 1,3-Dipolar Cycloaddition of 1a to 2a Catalyzed by Transition Metal-BINAP Complexes^a

entry	catalyst	solvent	temp	yield, $\%^b$	endo/ exo ^c	% ee of endo- $3a^d$	% ee of <i>exo</i> - 3a ^d
1	none	CHCl ₃	reflux	17	8:92		
2	4	CHCl ₃	reflux	78	5:95	5	4
3	5	CHCl ₃	reflux	61	45:55	91	25
4	5	CH_2Cl_2	rt	9	10:90	12	5
5	5	CH_2Cl_2	reflux	34	23:77	79	9
6	5	C ₆ H ₆	reflux	50	40:60	71	31
7	5	CH ₃ CN	rt	13	7:93	3	1
8	5	CH ₃ CN	reflux	27	26:74	1	11
9	6	CH_2Cl_2	reflux	24	11:89	23	1
10	6	C ₆ H ₆	reflux	80	10:90	1	13
11	7	CHCl ₃	reflux	63	47:53	91	24
12	7	C ₆ H ₆	reflux	90	27:73	66	7
13	7	CH ₃ CN	reflux	48	15:85	15	1

^a Reaction conditions: nitrone 1a (1.0 mmol), olefin 2a (1.0 mmol), and catalyst (0.1 mmol) were dissolved in a solvent (10 mL), and then the resulting mixture was stirred for 48 h. ^b Based on olefin **2a**. ^c Determined by ¹H NMR spectroscopy of the reaction mixture. d Determined by chiral HPLC using Daicel Chiralcel OJ-R

thenium can be used even in the presence of water. Herein, we wish to describe the asymmetric 1,3-dipolar cycloaddition of nitrones with α , β -unsaturated carbonyl compounds catalyzed by palladium(II) complexes coordinated with chiral phosphine ligands. A preliminary account of this work has appeared.¹²

Results and Discussion

Catalysts and Reaction Conditions. The late transition metal-catalyzed 1,3-dipolar cycloaddition of Nbenzylidenemethylamine N-oxide (1a) and 3-crotonoyl-1,3-oxazolidin-2-one (2a) was first investigated because this bidentate olefinic substrate is often used for highly selective asymmetric reactions such as the Diels-Alder reaction¹³ (eq 2, Table 1).

The 1,3-dipolar cycloaddition of the nitrone 1a and the olefin 2a without catalyst gave the isoxazolidine 3a with

Table 2. Ligand Effect on Palladium(II)-Catalyzed 1,3-Dipolar Cycloaddition of Nitrone 1a and 3-Crotonoyl-1,3-oxazolidine-2-one (2a)a

entry	ligand	yield, % ^b	endo/exo ^c	% ee of endo- 3a ^d	% ee of $exo-3a^d$
1	8	61	27:73	9	1
2	9	59	12:88	50	34
3	10	61	45:55	91	25
4	11	88	57:43	89	60
5	12	65	62:38	25	72
6	13	76	50:50	71	48

^a Reaction conditions: nitrone 1a (1.0 mmol), olefin 2a (1.0 mmol), AgBF₄ (0.2 mmol), and PdCl₂(ligand) (0.1 mmol) were dissolved in CHCl₃ (10 mL), and then the resulting mixture was stirred for 48 h under reflux. ^b Based on olefin 2a. ^c Determined by ¹H NMR spectroscopy of the reaction mixture. ^d Determined by chiral HPLC using Daicel Chiralcel OJ-R.

exo selectivity in only 17% yield (Table 1, entry 1). When the complex 4 was used as a catalyst, 3a was obtained in 78% yield with exo selectivity but without enantioselectivities of both isomers (Table 1, entry 2). Next, the palladium(II) complex 5 was prepared by the reaction of **4** and AgBF₄ in an organic solvent, and then the nitrone 1a and the olefin 2a were added to the catalyst solution. When chloroform was used as a solvent, 3a was obtained in 61% yield and the enantioselectivity of endo-3a drastically increased to 91% ee (Table 1, entry 3). This reaction did not proceed efficiently using CH₂Cl₂ as a solvent at room temperature (Table 1, entry 4). However, at reflux, the yield of **3a** was increased with higher endo selectivity and with 79% enantiomeric excess of the endo isomer than at room temperature (Table 1, entry 5). In refluxing benzene, the enantioselectivity of the endo isomer decreased slightly compared to the reaction in chloroform (Table 1, entry 6). In acetonitrile, neither the yield nor the enantioselectivity was favored at either room temperature or under reflux.

In the presence of the ruthenium(II) complex 6, which was efficient for the asymmetric hydrogenation of olefins,¹⁴ the reaction proceeded with exo selectivity, but the enantioselectivities of the products were poor (Table 1, entries 9 and 10).

On the basis of the above results, cationic (S)-BINAPpalladium(II) complex 7, which can be easily prepared by the method in eq 3 and has two acetonitriles as labile ligands, was selected as a catalyst for the asymmetric 1,3-dipolar cycloaddition of 1a and 2a (Table 1, entries 11-13). Previously, a chiral phosphinepalladium(II)nitrile complex such as 7 has been used for the synthesis of chiral alternating α -olefin-carbon monoxide copolymers.¹⁵ Significantly, complex 7 is stable in air and shows excellent solubility in a variety of solvents with the exception of diethyl ether and hexane. Therefore, the catalyst can be conveniently recovered simply by precipitation from the reaction mixture by adding hexane or diethyl ether. When this reaction was performed in chloroform as solvent at refluxing temperature, 3a was obtained in 63% yield and the enantiomeric excess of endo-3a was 91% ee, the same as when the catalyst 5 prepared in situ was used (Table 1, entry 11).

Interestingly, the enantioselectivity of the exo product is considerably smaller compared to the enantioselectivity

^{(10) (}a) Sanchez-Blanco, A. I.; Gothelf, K. V.; Jørgensen, K. A. Tetrahedron Lett. 1997, 38, 7923-7926. (b) Kobayashi, S.; Akiyama, R.; Kawamura, M.; Ishitani, H. *Chem. Lett.* **1997**, 1039–1040. (c) Kobayashi, S.; Kawamura, M. *J. Am. Chem. Soc.* **1998**, *120*, 5840– 5841

⁽¹¹⁾ For the chiral phosphine ligands used and their abbreviations, see: (a) Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH: New York, 1993. (b) Chiral Auxiliaries and Ligands in Asymmetric Syn*thesis*, Seyden-Penne, J., Ed.; Wiley: New York, 1995. (12) Hori, K.; Kodama, H.; Ohta, T.; Furukawa, I. *Tetrahedron Lett.*

¹⁹⁹⁶. 37. 5947-5950.

⁽¹³⁾ The review of catalytic asymmetric Diels-Alder reactions: (a) Kagan, H. B.; Riant, O. Chem. Rev. 1992, 92, 1007-1019. (b) Dias, L. C. J. Braz. Chem. Soc. 1997, 8, 289-332.

⁽¹⁴⁾ Ohta, T.; Takaya, H.; Noyori, R. Inorg. Chem. 1988, 27, 566-569.

^{(15) (}a) Xu, F. Y.; Zhao, A. X.; Chien, J. C. W. Makromol. Chem. **1993**, 194, 2579–2603. (b) Jiang, Z.; Adams, S. E.; Sen, A. Macromolecules 1994, 27, 2694-2700.

of the endo product in most cases. Thermal reaction of nitrone **1a** and **2a** proceeds with exo selectivity. Consequently, endo product was mainly formed from the catalytic reaction by palladium, while exo product was produced by both thermal and catalytic reactions. That could be the reason for the difference between both isomers in enantioselectivities, though it cannot be excluded that the enantioselectivities of the catalytic reactions giving both isomers are basically different.

Ligand Effect. Using chloroform as an optimal solvent, to improve the stereoselectivity and the enantioselectivity, the influence of the bidentated chiral-phosphine ligand on this reaction was studied (Table 2). When BCPM (8) and (+)-DIOP (9) were used instead of (S)-BINAP, the product yields were moderate and the enantioselectivities were not satisfactory (Table 2, entries 1 and 2). Employing (S)-TolBINAP (11) as a ligand

Table 3. Asymmetric 1,3-Dipolar Cycloaddition of Various Nitrones 1 and Olefins 2 Catalyzed by Palladium(II) Complex 14^a

entry	nitrone	olefin	product	yield, % ^b	endo/ exo ^c	% ee of endo product ^d	% ee of exo product ^d
1	1a	2a	3a	89	60:40	91	34
2	1b	2a	3b	94	93:7	89	93
3^e	1c	2a	3c	94	28:72	54	48
4	1d	2a	3d	trace			
5	1e	2a	3e	trace			
6	1a	2b	3f	trace			
7	1b	2b	3g	f			

^{*a*} Reaction conditions: nitrone **1** (1.2 mmol), olefin **2** (1.0 mmol), and **14** (0.1 mmol) were dissolved in CHCl₃ (10 mL), and then the resulting mixture was stirred for 48 h under reflux. ^{*b*} Based on olefin **2**. ^{*c*} Determined by ¹H NMR spectroscopy of the reaction mixture. ^{*d*} Determined by chiral HPLC using Daicel Chiralcel OJ-R or Daicel Chiralcel OD-H (see Experimental Section). ^{*e*} This reaction was performed in CH₂Cl₂ (10 mL), and then the resulting mixture was stirred for 48 h under reflux. ^{*f*} No reaction.

increased both the yield (88%) and the endo selectivity of **3a**, in which reaction the enantiomeric excess of the endo isomer was 89% and that of the exo isomer was improved to 60% ee (entry 4). Other BINAP derivatives were used as a ligand, but the stereo- and enantioselectivies of the products were not improved (Table 2, entries 5 and 6).

The Reaction of Various Nitrones and 3-Alkenoyl-1,3-oxazolidin-2-ones. On the basis of these results, cationic (*S*)-TolBINAP-palladium(II) nitrile complex **14** was prepared and used as a catalyst for this asymmetric 1,3-dipolar cycloaddition. The results of the asymmetric 1,3-dipolar cycloaddition of various nitrones 1a-e and olefins 2a-b (eq 4) are presented in Table 3.

When the reaction of **1a** and **2a** was catalyzed by preformed **14**, isoxazolidine **3a** was obtained in a higher yield than in the reaction using the catalyst prepared in situ. In the reaction of *N*-benzyl nitrone **1b** and **2a**, the isoxazolidine **3b** was obtained in 94% yield with high endo selectivity and with excellent enantioselectivity for both isomers. The absolute configuration of *endo*-**3b** was

Figure 1. ¹H NMR spectra (400 MHz, CDCl₃) of a mixture of nitrone **1a**, palladium(II) complex **7**, and olefin **2a**. (a) The nitrone **1a** (0.05 mmol) was dissolved in 0.5 mL of CDCl₃. (b) The complex **7** (0.005 mmol) was added to a mixture in (a). (c) The olefin **2a** (0.05 mmol) was added to a mixture in (b).

determined as $3R, 4S, 5R^{.16}$ On the other hand, the reaction of *N*-phenyl nitrone **1c** proceeded with high exo

selectivity and with moderate enantioselectivity for both exo and endo isomers. The absolute configuration of *exo*-**3c** could not be determined, and that of *endo*-**3c** was determined as $3R, 4S, 5R^{.17}$ Using the larger *N*-*tert*-butyl nitrone **1d** or *N*-trityl nitrone **1e**, only small amounts of the isoxazolidines **3d** and **3e** were obtained. Similarly, the use of 3-cinnamoyl-1,3-oxazolidin-2-one (**2b**) resulted in only trace amounts of cycloaddition product.

Reaction Mechanism. For mechanistic considerations, two series of ¹H NMR analyses were presented in Figures 1 and 2. In Figure 1, aromatic and methine protons (8.18–8.26 ppm) of nitrone **1a** became broader in the presence of 10 mol % catalyst **7** (b) than in the absence of complex (a). This broadening indicates that some interaction occurred between the nitrone **1a** and the complex. Addition of olefin **2a** to the above mixture of **1a** and **7** in CDCl₃ did not make any change in their signals. Next, to a solution of olefin **2a** was added the complex in three portions, and then the nitrone **1a** was added to this mixture successively. The results are listed in Figure 2. All proton signals of the olefin **2a** became broad by adding complex (Figure 2a–d). These broadenings also indicate that the olefinic substrate interacted

(75% ee), and the absolute configuration of the isoxazolidine ring of (-)-endo-**3c** was assigned as 3S,4R,5S in the literature (see ref 9a).

quickly with the complex. Interestingly, by addition of nitrone 1a to the above mixture broad signals of the olefin became sharp, like the signals of the olefin alone. These observations show that both substrates can coordinate to the palladium center and the nitrone 1a coordinates to the complex 7 more strongly than the olefin 2a. That is to say, most of the palladium species could be formulated as A at room temperature. At room temperature, the palladium complex showed virtually no catalytic activity as mentioned above (Figure 3). If elevated temperature accelerates the transformation between A and **B**, **B** therefore must react with nitrone more smoothly than the free olefin. For obtaining some evidence for this prediction, an ¹H NMR study at elevated temperature was attempted. But all signals including TMS became broadened at 40-60 °C. The structure **B** cannot be confirmed by any experimental way, but there are several examples in which Lewis acids are thought to activate olefins such as 2a through bidentate coordination in 1,3dipolar cycloaddition reactions.9a,18

Origin of Stereo- and Enantioselectivity. The endo adduct 3b was selectively obtained in the reaction of *N*-benzyl nitrone **1b** and **2a**. On the other hand, *exo*-**3c** was the major product from 1c. Such differences in selectivity could be explained by the steric effect in the transition state between the intermediate **B** and the two nitrones (Figures 4-6). From the model the *Si* face of the olefin's α -carbon in **B** is not covered by any atoms or groups in **B**, while the *Re* face of the olefin's α -carbon in **B** is partially shaded by the aryl substituent on phosphorus atom of TolBINAP. That is to say, the Si face of the coordinated olefin's a-carbon is less sterically hindered (top view) than the Re face (bottom view). For N-benzyl nitrone 1b, endo approach to the Si face of olefin's α -carbon in **B** seems to be the most favored, and the exo approach to the Si face creates some steric repulsion between the aryl moiety on phosphorus atom

⁽¹⁶⁾ The optical rotation of (+)-*endo*-**3b** was reported as $[\alpha]_D = +5.5$ (51% ee), and the absolute configuration of the isoxazolidine ring of (+)-*endo*-**3b** was assigned as 3S,4R,5S in the literature (see ref 6c). (17) The optical rotation of (-)-*endo*-**3c** was reported as $[\alpha]_D = -13.1$

⁽¹⁸⁾ Kanemasa, S.; Uemura, T.; Wada, E. *Tetrahedron Lett.* **1992**, *33*, 7889–7892.

Figure 2. ¹H NMR spectra (400 MHz, CDCl₃) of a mixture of olefin 2a, palladium(II) complex 7, and nitrone 1a. (a) The olefin 2a (0.05 mmol) was dissolved in 0.5 mL of CDCl₃. (b) The complex 7 (0.0015 mmol) was added to a mixture in (a). (c) The complex 7 (0.0015 mmol) was further added to a mixture in (b). (d) The complex 7 (0.0020 mmol) was further added to a mixture in (c). (e) The nitrone 1a (0.05 mmol) was added to a mixture in (d).

and the benzyl group on nitrone (dotted atoms in Figure 5). Meanwhile, the phenyl substituent of N-phenyl nitrone 1c prevents the endo contact on the Si face of the olefin's α -carbon in **B** (dotted atoms in Figure 6). Consequently, the exo attack for the Si face of the olefin's α -carbon in **B** is thought to be the most preferential.

Conclusion

In conclusion, the 1,3-dipolar cycloaddition of nitrone 1 to olefin 2 was catalyzed by a cationic TolBINAPpalladium(II) complex 14 resulting in moderate to excellent yields and good enantioselectivities for the resulting isoxazolidine derivatives. To the best of our knowledge, this is the first example of a late transition metalcatalyzed asymmetric 1.3-dipolar cycloaddition. Further investigation of this catalytic system is currently in progress.

Experimental Section

General Methods. The ¹H and ³¹P NMR spectra were recorded at 400 and 160 MHz, respectively. Chemical shifts for NMR are reported in ppm downfield from TMS as an

internal standard for ¹H and 85% H₃PO₄ as an external standard for ³¹P. Melting points were not corrected. Solvents were dried using standard procedures¹⁹ and distilled under Ar. Nitrones 1a,²⁰ 1b,²¹ 1c,²² and $1d^{23}$ and 3-alkenoyl-1,3-oxazolidin-2-ones $2a^{24}$ and $2b^{24}$ were prepared according to the procedures in published literature. Nitrone 1e was used as supplied without further purification.

Preparation of (S)-TolBINAP-Palladium(II) Nitrile Complex 14. Silver tetrafluoroborate (1.23 g, 6.3 mmol) under argon atmosphere was added to a solution of (S)-TolBINAPpalladium dichloride²⁵ (2.56 g, 3 mmol) in acetonitrile (60 mL). The solution was stirred at room temperature. After being stirred for 30 min, the resulting mixture was filtered and concentrated to ca. 5 mL, and then the solution was slowly

⁽¹⁹⁾ Perrin, D. D.; Armarego, W. L. F. In Purification of Laboratory

Chemicals, 3rd ed.; Pergamon: Oxford, 1988. (20) Chan, K. S.; Yeung, M. L.; Chan, W.-K.; Wang, R.-J.; Mak, T. C. W. *J. Org. Chem.* **1995**, *60*, 1741–1747.

⁽²¹⁾ Murahashi, S.-I.; Mitsui, H.; Shiota, T.; Tsuda, T.; Watanabe, S. J. Org. Chem. 1990, 55, 1736-1744.

⁽²²⁾ Wheeler, O. H.; Gore, P. H. J. Am. Chem. Soc. 1956, 78, 3363-3366

⁽²³⁾ Buehler, E. J. Org. Chem. 1967, 32, 261-265.

⁽²⁴⁾ Evans, D. A.; Chapman, K. T.; Bisaha, J. J. Am. Chem. Soc. **1988**, *110*, 1238–1256.

⁽²⁵⁾ Sodeoka, M.; Tokunoh, R.; Miyazaki, F.; Hagiwara, E.; Shibasaki, M. Synlett 1997, 463-466.

Figure 3. Plausible mechanism.

Figure 4. Space-filling model of (*S*)-TolBINAP-Pd(II)-**2a** complex (olefinic carbons as dark areas).

added into ether (50 mL). The light yellow precipitate was filtered and dried in vacuo. The obtained yellow solid was identified as **4** by NMR and used directly as a catalyst: yield of **14** 2.30 g (63%); mp 123.0 °C dec; ¹H NMR (CDCl₃) δ 2.05 (s, 6H), 2.41 (s, 6H), 3.25 (br, 6H), 6.70 (d, *J* = 8.4 Hz, 4H), 7.17–7.73 (m, 24H); ³¹P NMR (CDCl₃) δ 32.52 (s).

General Procedure for Palladium(II)-Catalyzed Asymmetric 1,3-Dipolar Cycloaddition of Nitrones 1 with Olefins 2. In a 50 mL three-necked reaction vessel equipped with a condenser and a magnetic stirring bar were placed 1 (1.2 mmol), 2 (1.0 mmol), and 4 (104 mg, 0.1 mmol) under argon atmosphere. To this was added CHCl₃ (10 mL) by syringe. The resulting mixture was stirred under reflux for 48 h. The yields of the isoxazolidines **3** were determined by ¹H NMR spectroscopy of the reaction mixture using the ratio of the integral value between the signal of **2a** (δ 1.97 (dd, J = 6.2, 1.0 Hz, 3H, Me)) and 5-Me of *endo*- and *exo*-**3** (see below). After addition of silica gel (ca. 1 g) to the solution and concentration of the mixture in vacuo, the residue was extracted with diethyl ether (20 mL) by Soxhlet extractor for 6 h. Removal of the solvent followed by silica gel column chromatography gave *endo*-**3** and *exo*-**3**. The results of 1,3-dipolar cycloaddition of **1a**-**c** with **2a** and **2b** are given in Table 3. Spectral and analytical data of **3a**-**c** are listed below.

3-((2,5-Dimethyl-3-phenylisoxazolidin-4-yl)carbonyl)-1,3-oxazolidin-2-one (3a).²⁶ Yield: 89%. endo-3a: viscous colorless liquid; $[\alpha]^{20}_{D} = +10.0$ (*c* 1.0, CHCl₃, ee 87%); ¹H NMR $(CDCl_3) \delta$ 1.53 (d, J = 6.0 Hz, 3H, 5-Me), 2.59 (s, 3H, N-Me), 3.88-3.99 (m, 2H), 4.10 (d, J = 7.6 Hz, 1H), 4.22-4.34 (m, 3H), 4.54 (dd, J = 4.8, 7.6 Hz, 1H), 7.20-7.33 (m, 5H). Anal. Calcd for C15H18N2O4: C, 62.06; H, 6.25; N, 9.65. Found: C, 62.00; H, 6.26; N, 9.61. exo-3a: white crystal; mp 125.2-133.5 °C; $[\alpha]^{20}_{D} = -20.0$ (*c* 1.0, CHCl₃, ee 34%); ¹H NMR (CDCl₃) δ 1.30 (d, J = 6.0 Hz, 3H, 5-Me), 2.54 (s, 3H, N-Me), 2.98-3.04 (m, 1H), 3.50-3.65 (m, 2H), 3.95 (d, J = 10.8 Hz, 1H), 4.03(dt, J = 4.8, 8.4 Hz, 1H), 4.33 (dd, J = 4.8, 10.8 Hz, 1H), 4.85 (qd, J = 6.0, 8.4 Hz, 1H), 7.21-7.28 (m, 5H). Anal. Calcd for C15H18N2O4: C, 62.06; H, 6.25; N, 9.65. Found: C, 61.88; H, 6.25; N, 9.61. The endo/exo ratio was determined by ¹H NMR spectroscopy using the integral ratio of each 5-Me protons of 3a in the reaction mixture. Enantiomeric excesses were determined by HPLC analysis using a chiral column (Daicel Chiralcel OJ-R, mobile phase: methanol/water = 60:40, detector: UV 220 nm, flow rate: 0.5 mL/min, endo-3a: $t_R = 64.4$ (minor) and 72.6 min (major), exo-3a: $t_R = 24.0$ (major) and 28.5 min (minor)).

3-((2-Benzyl-5-methyl-3-phenylisoxazolidin-4-yl)carbonyl)-1,3-oxazolidin-2-one (3b). Yield: 94%. These products were identified by comparison of their ¹H NMR signals with those in the literature.^{6a} endo-(3R, 4S, 5R)-**3b**: viscous colorless liquid; $[\alpha]^{20}{}_{\rm D} = -11.0$ (*c* 1.0, CHCl₃, ee 83%) (lit.^{6c} $[\alpha]_{\rm D} = +5.5$ (c1.0, CHCl₃, ee 51%)). exo-3b: white crystal; mp 105.0-112.1 °C; $[\alpha]^{20}_{D} = -33.0$ (c 1.0, CHCl₃, ee 89%) (lit.^{6a} $[\alpha]_{D} = +15.0$ (c 1.0, CHCl₃, ee 27%)). The endo/exo ratio was determined by ¹H NMR spectroscopy using the integral ratio of each 5-Me protons (*endo*-**3b**: 1.59 (d, J = 6.0 Hz, 3H), *exo*-**3b**: 1.33 (d, J= 6.0 Hz, 3H)) of **3b** in the reaction mixture. Enantiomeric excesses were determined by HPLC analysis using a chiral column (Daicel Chiralcel OD-H; endo-3b: mobile phase: n-hexane/2-propanol = 80:20, detector: UV 220 nm, flow rate: 0.3 mL/min, $t_{\rm R} = 39.6$ (3*S*,4*R*,5*S*) and 59.8 min (3*R*,4*S*,5*R*); exo-**3b**: mobile phase: *n*-hexane/2-propanol = 85:15, detector: UV 220 nm, flow rate: 0.3 mL/min, $t_{\rm R} = 29.9$ (major) and 34.3 min (minor)).

3-((5-Methyl-2,3-diphenylisoxazolidin-4-yl)carbonyl)-1,3-oxazolidin-2-one (3c). Yield: 94%. These products were identified by comparison of their ¹H NMR signals with those in the literature.⁶ endo-(3R, 4S, 5R)-**3c**: viscous light yellow liquid; $[\alpha]^{20}_{D} = +9.0$ (*c* 1.0, CHCl₃, ee 54%) (lit.^{9a} $[\alpha]_{D} = -13.1$ (c 1.0, CHCl₃, ee 75%)). *exo*-**3c**: viscous light yellow liquid; $[\alpha]^{20}_{D} = -10.0$ (c 1.0, CHCl₃, ee 39%) (lit.^{6a} $[\alpha]_{D} = +11.9$ (c 1.0, CHCl₃, ee 60%)). The endo/exo ratio was determined by ¹H NMR spectroscopy using the integral ratio of each 5-Me proton (endo-3c: 1.54 (d, J = 6.0 Hz, 3H), exo-3c: 1.45 (d, J= 6.0 Hz, 3H)) of **3c** in the reaction mixture. Enantiomeric excesses were determined by HPLC analysis using a chiral column (Daicel Chiralcel OD-H; endo-3c: mobile phase: n-hexane/2-propanol = 90:10, detector: UV 220 nm, flow rate: 0.3 mL/min, $t_{\rm R} = 98.9 (3R, 4S, 5R)$ and 130.7 min (3S, 4R, 5S); exo-3c: mobile phase: *n*-hexane/2-propanol = 90:10, detector: UV 254 nm, flow rate: 0.3 mL/min, $t_{\rm R} = 41.7$ (major) and 44.1 min (minor)).

⁽²⁶⁾ Identification of the endo/exo isomers was performed on the basis of their $^1\mathrm{H}$ NMR spectra by coupling constants as well as NOE analysis (see ref 12).

Figure 5. Proposed exo and endo approach of nitrone 1b for intermediate B.

Figure 6. Proposed exo and endo approach of nitrone 1c for intermediate B.

Acknowledgment. We thank Dr. Takayuki Yamashita for his helpful discussions and also the undergraduate project students Junji Ito, Mitsuru Kawazome, Noriteru Maeda, Akiko Fujii, Masamiti Okamura, Takeshi Inoue, Takashi Okamoto, Daisuke Kobayashi, and Hiroyuki Kamizono. This work was partially supported by a grant to RCAST at Doshisha University from the Ministry of Education, Japan and Doshisha University's Reserch Promotion Fund.

Supporting Information Available: HPLC charts of racemates and reaction mixtures and ¹H NMR and IR spectra of both endo and exo isomers of **3a**–**c**. This material is available free of charge via the Internet at http://pubs.acs.org. JO981483G